
INESS Model checking Micro Translation Verification Conclusion

Experience and Insight from the INESS Project

Helle Hvid Hansen

Eindhoven University of Technology

RSTRC Workshop, 27 Sep 2011, York, UK



INESS Model checking Micro Translation Verification Conclusion

The INESS Project (EU FP7)

INtegrated European Signalling System

Goal:
Develop a harmonized and verified specification of common core
functionality for a new generation of European interlockings.

Purpose:
Interoperability between countries, increase competition, faster
certification process.

Partners:
• Coordinator: UIC (International Union of Railways)
• Railway operators: ProRail, DB Netz, ...
• Industry: Siemens, Alstrom, Bombardier, Thales, ...
• Universities: Eindhoven, Twente, Southampton, York.

Duration: Oct 2008 - Sep 2011 (extended to Mar 2012).



INESS Model checking Micro Translation Verification Conclusion

Task of the Universities

Task:
Formally verify Executable UML model of Common Core functional
requirements against a set of safety properties.

xUML lacks tooling for formal verification.

Apply our general-purpose verification technology:

Model checking: mCRL2, LTSmin (TUE and UT).

Theorem proving: UML-B/Event-B, Rodin (Southampton)

Strategy:

1 Translate xUML into formal language of our tools.

2 Formalise safety properties (logic formula / xUML).

3 Formally verify that safety properties hold using our tools.



INESS Model checking Micro Translation Verification Conclusion

Task of the Universities

Task:
Formally verify Executable UML model of Common Core functional
requirements against a set of safety properties.

xUML lacks tooling for formal verification.

Apply our general-purpose verification technology:

Model checking: mCRL2, LTSmin (TUE and UT).

Theorem proving: UML-B/Event-B, Rodin (Southampton)

Strategy:

1 Translate xUML into formal language of our tools.

2 Formalise safety properties (logic formula / xUML).

3 Formally verify that safety properties hold using our tools.



INESS Model checking Micro Translation Verification Conclusion

Task of the Universities

Task:
Formally verify Executable UML model of Common Core functional
requirements against a set of safety properties.

xUML lacks tooling for formal verification.

Apply our general-purpose verification technology:

Model checking: mCRL2, LTSmin (TUE and UT).

Theorem proving: UML-B/Event-B, Rodin (Southampton)

Strategy:

1 Translate xUML into formal language of our tools.

2 Formalise safety properties (logic formula / xUML).

3 Formally verify that safety properties hold using our tools.



INESS Model checking Micro Translation Verification Conclusion

Model Checking in INESS

Given formal model (of system behaviours) + property P,
check that all system behaviours satisfy P.

Model checking of xUML model is w.r.t. particular instance:
model instance = generic xUML model + track layout.

Formal model is expressed in process algebra mCRL2.

Symbolic model checking using LTSmin.



INESS Model checking Micro Translation Verification Conclusion

Model Checking in INESS

Given formal model (of system behaviours) + property P,
check that all system behaviours satisfy P.

Model checking of xUML model is w.r.t. particular instance:
model instance = generic xUML model + track layout.

Formal model is expressed in process algebra mCRL2.

Symbolic model checking using LTSmin.



INESS Model checking Micro Translation Verification Conclusion

Model Checking Safety Properties

General approach:

Safety: “system cannot reach any bad states”.

Verifying safety: reachability analysis.

Safety property formalised as logic formula (mu-calculus).

Our approach:

Express safety property as UML state machine (“observer”):
send error signal when bad state is reached.

Translate observers automatically with xUML model.

Verification: search for error action.

Advantages:

Scalability: larger systems can be verified.

Use of UML facilitates communication with UML modellers.



INESS Model checking Micro Translation Verification Conclusion

Model Checking Safety Properties

General approach:

Safety: “system cannot reach any bad states”.

Verifying safety: reachability analysis.

Safety property formalised as logic formula (mu-calculus).

Our approach:

Express safety property as UML state machine (“observer”):
send error signal when bad state is reached.

Translate observers automatically with xUML model.

Verification: search for error action.

Advantages:

Scalability: larger systems can be verified.

Use of UML facilitates communication with UML modellers.



INESS Model checking Micro Translation Verification Conclusion

Model Checking Safety Properties

General approach:

Safety: “system cannot reach any bad states”.

Verifying safety: reachability analysis.

Safety property formalised as logic formula (mu-calculus).

Our approach:

Express safety property as UML state machine (“observer”):
send error signal when bad state is reached.

Translate observers automatically with xUML model.

Verification: search for error action.

Advantages:

Scalability: larger systems can be verified.

Use of UML facilitates communication with UML modellers.



INESS Model checking Micro Translation Verification Conclusion

Our first experiment: Micro Interlocking

Common Core was only due late in project timeline. We started
with a toy example manufactured by Markus Schacher of
KnowGravity.

Purpose of the experiment:

Learn how to translate xUML constructs into mCRL2

Stimulate discussions about interpretation of xUML

Make preliminary assessment of feasibility of our verification
strategy

Serve as a first test case for an automatic translation



INESS Model checking Micro Translation Verification Conclusion

Our first experiment: Micro Interlocking

Common Core was only due late in project timeline. We started
with a toy example manufactured by Markus Schacher of
KnowGravity.

Purpose of the experiment:

Learn how to translate xUML constructs into mCRL2

Stimulate discussions about interpretation of xUML

Make preliminary assessment of feasibility of our verification
strategy

Serve as a first test case for an automatic translation



INESS Model checking Micro Translation Verification Conclusion

So what does Micro Interlocking look like?

Class diagram:

Track layout:

s1

t1

t3

t2

p1

r2

r1

One of the state diagrams:



INESS Model checking Micro Translation Verification Conclusion

Translation from xUML to mCRL2

Interpreting the xUML:

UML semantics underspecified (what did the modeller mean?)

Different runtime semantics and event priorities possible.

⇒ Translation must resolve ambiguities.

Expressing xUML in mCRL2:

UML states translate to process parameters.

UML events translate to actions.

...

Unbounded object event pools ⇒ infinite state space

Non-local data access ⇒ extra communication



INESS Model checking Micro Translation Verification Conclusion

Translation from xUML to mCRL2

Interpreting the xUML:

UML semantics underspecified (what did the modeller mean?)

Different runtime semantics and event priorities possible.

⇒ Translation must resolve ambiguities.

Expressing xUML in mCRL2:

UML states translate to process parameters.

UML events translate to actions.

...

Unbounded object event pools ⇒ infinite state space

Non-local data access ⇒ extra communication



INESS Model checking Micro Translation Verification Conclusion

Translation from xUML to mCRL2

Interpreting the xUML:

UML semantics underspecified (what did the modeller mean?)

Different runtime semantics and event priorities possible.

⇒ Translation must resolve ambiguities.

Expressing xUML in mCRL2:

UML states translate to process parameters.

UML events translate to actions.

...

Unbounded object event pools ⇒ infinite state space

Non-local data access ⇒ extra communication



INESS Model checking Micro Translation Verification Conclusion

Automated Translation from xUML to mCRL2

Implemented using model transformation technology Epsilon,
developed in York.

Architecture:

Parser for action and expression language (non-UML syntax)

Transformation from UML to intermediate representation
(iUML).

Code generation from iUML to mCRL2.

Input:

interlocking xUML model

instance specification (track layout)

safety property (as xUML model)

Output: mCRL2 specification



INESS Model checking Micro Translation Verification Conclusion

Automated Translation from xUML to mCRL2

Implemented using model transformation technology Epsilon,
developed in York.

Architecture:

Parser for action and expression language (non-UML syntax)

Transformation from UML to intermediate representation
(iUML).

Code generation from iUML to mCRL2.

Input:

interlocking xUML model

instance specification (track layout)

safety property (as xUML model)

Output: mCRL2 specification



INESS Model checking Micro Translation Verification Conclusion

Verification of Micro Interlocking (1)

We instantiated Micro for the following track layouts:Automated Verification of Executable UML Models 19

s1

t1

(a) Layout 1

s1

t1 p1

t3

t2

(b) Layout 2

s1

t1 p1

t3

t2

p2
t4

(c) Layout 3

s1

t1
p1

t3

t2

p2

t5

t4

(d) Layout 4

s11

t11 p1

p2

tm

s12

t12

s21

t21

s22

t22

(e) Layout 5

s1

t1 p1

p3

t2 t3

t4
p4

t5

p2

p5 t6

s2
t7

s3

(f) Layout 6

Fig. 6: Several track layouts used to test the feasibility of the verification task.

Table 1: State spaces of the layouts from Figure 6, without observers, where
each state machine is assumed to have at most one message in its event pool.
Resource consumption is for the LTSmin symbolic model checker run on an
Intel Xeon X5550 machine with 148 GB of internal memory; a saturation-like
[?] exploration strategy was used. The running times exclude the time to load
the model.

Layout Components Routes States Runtime (s) Memory (MB)

1 2 1 1.7×104 0.01 61
2 5 2 1.3×109 0.25 76
3 7 2 4.9×1011 7.73 86
4 8 3 8.9×1013 19.39 115
5 11 6 6.8×1023 2605.90 3133
6 15 8 > 7.0×1030 > 496 h > 30 GB



INESS Model checking Micro Translation Verification Conclusion

Verification of Micro Interlocking (2)

Automated Verification of Executable UML Models 19

s1

t1

(a) Layout 1

s1

t1 p1

t3

t2

(b) Layout 2

s1

t1 p1

t3

t2

p2
t4

(c) Layout 3

s1

t1
p1

t3

t2

p2

t5

t4

(d) Layout 4

s11

t11 p1

p2

tm

s12

t12

s21

t21

s22

t22

(e) Layout 5

s1

t1 p1

p3

t2 t3

t4
p4

t5

p2

p5 t6

s2
t7

s3

(f) Layout 6

Fig. 6: Several track layouts used to test the feasibility of the verification task.

Table 1: State spaces of the layouts from Figure 6, without observers, where
each state machine is assumed to have at most one message in its event pool.
Resource consumption is for the LTSmin symbolic model checker run on an
Intel Xeon X5550 machine with 148 GB of internal memory; a saturation-like
[?] exploration strategy was used. The running times exclude the time to load
the model.

Layout Components Routes States Runtime (s) Memory (MB)

1 2 1 1.7×104 0.01 61
2 5 2 1.3×109 0.25 76
3 7 2 4.9×1011 7.73 86
4 8 3 8.9×1013 19.39 115
5 11 6 6.8×1023 2605.90 3133
6 15 8 > 7.0×1030 > 496 h > 30 GB



INESS Model checking Micro Translation Verification Conclusion

Verification: feasibility

Resource consumption in state space exploration:

Layout Elts Routes States Time Mem (MB)

1 2 1 1.7×104 0.01 sec 61
2 5 2 1.3×109 0.25 sec 76
3 7 2 4.9×1011 7.73 sec 86
4 8 3 8.9×1013 19.39 sec 115
5 11 6 6.8×1023 43 mins 3133
6 15 8 7.0×1031 1.7 days > 32 GB

Safety property:

“A point belonging to an established route should not move.”

Found violation already in layout 2.



INESS Model checking Micro Translation Verification Conclusion

Verification: feasibility

Resource consumption in state space exploration:

Layout Elts Routes States Time Mem (MB)

1 2 1 1.7×104 0.01 sec 61
2 5 2 1.3×109 0.25 sec 76
3 7 2 4.9×1011 7.73 sec 86
4 8 3 8.9×1013 19.39 sec 115
5 11 6 6.8×1023 43 mins 3133
6 15 8 7.0×1031 1.7 days > 32 GB

Safety property:

“A point belonging to an established route should not move.”

Found violation already in layout 2.



INESS Model checking Micro Translation Verification Conclusion

Verification of Micro Interlocking: Remarks

Micro is too simple to be safe (we expect errors!)

We have demonstrated that

we can find errors.

errors can be found in small track layouts.

error traces can be reported for diagnostics.

We have demonstrated a methodology.



INESS Model checking Micro Translation Verification Conclusion

Verification of Micro Interlocking: Remarks

Micro is too simple to be safe (we expect errors!)

We have demonstrated that

we can find errors.

errors can be found in small track layouts.

error traces can be reported for diagnostics.

We have demonstrated a methodology.



INESS Model checking Micro Translation Verification Conclusion

Prototype Tool Chain

Micro 2010
(Artisan xUML)

Artisan

Micro 2010
(UML2-XMI)

Safety invariant

Python script

Track layout

Automated Translation
(Epsilon, Eclipse)

Formal model
(mCRL2)

Model checking tools
(mCRL2, LTSmin)

Error trace
(visualised in Eclipse)

Violation

Tool reports:
 No error found

No violation

A generic verification
methodology

Based on Eclipse development
platform.

Works for xUML models similar to
INESS example models.

Safety properties supplied as UML
state machines.

Error trace is visualised as UML
sequence diagram.



INESS Model checking Micro Translation Verification Conclusion

Conclusion

Challenges encountered:

xUML semantics is underspecified and ambiguous.

State space explosion (still, errors may be found in small
layouts).

In theorem proving, abstraction refinement needs much
human insight ⇒ low degree of automation.

Future work:

Verify Common Core xUML model (still to be delivered).

Automatic translation from xUML to Promela (SPIN model
checker) using iUML.

Scalability (improve model checker, compositional verification,
abstractions, ...)



INESS Model checking Micro Translation Verification Conclusion

Conclusion

Challenges encountered:

xUML semantics is underspecified and ambiguous.

State space explosion (still, errors may be found in small
layouts).

In theorem proving, abstraction refinement needs much
human insight ⇒ low degree of automation.

Future work:

Verify Common Core xUML model (still to be delivered).

Automatic translation from xUML to Promela (SPIN model
checker) using iUML.

Scalability (improve model checker, compositional verification,
abstractions, ...)



INESS Model checking Micro Translation Verification Conclusion

INESS University Teams

Eindhoven (NL):

Jos Baeten,

Jan Friso Groote,

Helle Hvid Hansen (PD)

Bas Luttik,

Mohammad Mousavi.

Twente (NL):

Jeroen Ketema (PD),

Jaco van de Pol.

York (UK):

Steve King,

Richard Paige,

Louis Rose (PD),

Osmar Marchi dos Santos (PD),

Jim Woodcock.

Southampton (UK):

Vitaly Savicks (PD),

Colin Snook.

(PD = PostDoc)


	INESS
	INESS

	Model checking
	

	Micro
	Micro

	Translation
	Translation

	Verification
	Verification

	Conclusion
	


