
 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 1/14

FP7 Project 2007- Grant agreement n°: 218575

Project Acronym: INESS

Project Title: INtegrated European Signalling System

Instrument: Large-scale integrating project
Thematic Priority: Transport

Document Title: Requirements specification Description

Due date of deliverable 2009-10-31
Actual submission date 2010-03-08

Deliverable ID: D.G.3.2
Deliverable Title: Requirements specification Description
WP related: Methods and Tools for Safety Case
Responsible partner: TUBS
Task/Deliverable leader Name: Jörg R. Müller
Contributors: TUBS, BBR, Funkwerk

Start date of the project: 01-10-2008 Duration: 36 Months

Project coordinator: Paolo De Cicco
Project coordinator organisation: UIC

Revision: 1 Dissemination Level1: CO

DISCLAIMER

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is
fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

PROPRIETARY RIGHTS STATEMENT

This document contains information, which is proprietary to the INESS Consortium. Neither this document nor the
information contained herein shall be used, duplicated or communicated by any means to any third party, in whole

or in parts, except with prior written consent of the INESS consortium.

1 PU: Public, PP: Restricted to other programme participants (including the Commission Services), RE: Restricted to a group specified by

the consortium (including the Commission Services), CO: Confidential, only for members of the consortium (including the Commission

Services).

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 2/14

Document Information

Document type: Report
Document Name: INESS_WS G_Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08
Revision: 9
Revision Date: 2010-03-08
Author: Jürgen Schröder, Jörg R. Müller (TUBS), G. v. Buxhoeveden
Dissemination level:CO

Approvals

 Name Company Date Visa

WP leader Jörg R. Müller TUBS

WS Leader Jörg R. Müller TUBS

Project Manager

Steering Board

Document history

Revision Date Modification Author

1 2009-07-02 Creation of document J. Schröder

2 2009-07-27 Merge with BBR G. Buxhoeveden

3 2009-07-31
List of function / Collections of Requirements

deleted
J. R. Müller

4 2009-09-25 minor modifications Jörg R. Müller

5 2010-01-06 Method/Tool section expanded G.Buxhoeveden

6 2010-01-26 Tool section extended G.Buxhoeveden

7 2010-01-27 Table 1 added, use of natural language G.Buxhoeveden

8 2010-03-03 Added Tool Enterprise Architect Section G.Buxhoeveden

9 2010-03-08
Rewritten, Figures 1-4 added, Results of

Workshop taken into accout, etc
Jörg R. Müller

TABLE OF CONTENTS

Glossary ... 3

Section 1 – Executive Summary.. 4

The context of workstream G .. 4

The aim of task G.3.2 .. 4

Section 2 – Requirements specification Description ... 5

2.1 Introduction ... 5

2.2 The relation of deliverable G.3.2 to deliverable G.3.1 .. 6

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 3/14

2.3 Description means: Languages and methods ... 7
2.3.1 Non-formal description means: Natural Language and structured natural language 8

2.3.1.1 Natural language as a specification language ... 8

2.3.1.2 The structuring of natural language as a method to get more unambiguous

specifications ... 8

2.3.2 Semi-formal description means: UML class-diagrams and use-cases 9

2.3.2.2 UML class-diagrams ... 10

2.3.2.1 UML use-cases ... 10

2.4 Tools .. 10
2.4.1 Tools to support the non-formal specification ... 11

2.4.2 The tool to define and trace requirements in a semi-formal way 11

2.4.3 Requirements tracing with Trend/Analyst ... 12

Section 4 – CONCLUSIONS .. 13

Section 5 – BIBLIOGRAPHY .. 14

Glossary

The following abbreviations are applied in this document

DMS Document Management System

EA Enterprise Architect

MDA Model Driven Architecture

MS Microsoft

SRS System Requirements Specification

SW Software

TA Trend Analyst

UML Unified Modeling Language

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 4/14

Section 1 – Executive Summary

The context of workstream G

The aim of workstream G is to reduce time and money for the Safety Case in industry, i.e. operators as

well as suppliers, by avoiding unnecessary or redundant procedures. To achieve this aim one can

identify four phases in workstream G (see figure 1).

Figure 1: One can specify four phases to achieve the aim of Workstream G

The tasks in green have already been finalized. The yellow ones are currently under development..

The aim of task G.3.2

In this task description means and tools to describe the requirements for the supportive tool to be

developed in WS G have to be chosen. Within the context of this tasks the term “description means”

encompasses “description language” and “description method”.

The following requirements could be identified in various discussions.

 The language(s) to be chosen shall facilitate the generation of unambiguous but readable

requirements.

 The method(s) to be chosen shall support the modelling of the identified functions in an

appropriate manner.

 The tool(s) to be chosen shall support the language and method and shall be industriy proven.

Please note: It is not the aim of G.3.2 to specify the software requirements. This is to be done in task

G.4.2 “System and Software Specification”. Here, in G.3.2, it is the aim to specify the languages,

methods and tools to describe the software requirements.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 5/14

Section 2 – Requirements specification Description

2.1 Introduction

The specification of software (SW) can roughly be diveded into the specification of the architecture of

the SW and its inteded behaviour. These two aspects can be specified non-formally with natural

language as well as on the basis of (semi-) formal specification languages. Based on this, appropriate

methods and tools have to be chosen to support the specification of the corresponding aspect of the

SW. These relations are depicted in the two-dimensional Figure 2.

architecture

(semi-)formal

behaviour

non-formal

description means

description tool

description means

description method

description method

description tool

Figure 2: Relations between architecture, behaviour, formalization and language, method and
tool

There exist dozens of non-, semi- and formal languages and methods to specify the different aspects of

the requirements of a software tool. Figure 3 gives an overview of the chosen languages, methods and

tools for the various specification tasks. One can see, that the following has been chosen:

Pure language: Natural language

Pure method: Structuring of natural language

As mixture of language and method:

 Use cases

 Class diagrams

Supporting tools: MS Word, MS Visio, MS Excel and Enterprice Architect.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 6/14

architecture

(semi-)formal

use cases

Enterprise

Architect

MS-Word /

MS-Visio /

MS-Excel

behaviour

non-formal

natural language

structured

natural

language

class diagrams

description tool

description method

description method

description tool

description language

description language

Figure 3: Different modeling languages, methods and tools for different tasks

Please note: The identified description means and tools have been identified as beeing most probable

the best to be chosen. It may turn out during the specification or implementation tasks, that further

approaches or tools may be usefull. Agaist this background, it is intended to use the identified means,

but changes may be appropriate during the projects lifetime.

The following sections of this chapter describe the relation of this task to task G.3.1 (section 2.2),

examine and justify the chosen description languages and methods (section 2.3) and the chosen tools

to support the specification (section 2.4).

2.2 The relation of deliverable G.3.2 to deliverable G.3.1

In deliverable G.3.1 “Definition of process description technology” a set of modelling languages and

methods has already been examined. This had to be done against the following background:

 In G.3.1, it was the aim to almost exclusively model processes (i.e. the processes in the norms

EN 5012x)

 An elaborated description of these processes in natural language already existed.

 The processes were, at least to a remarkable exted, already known by practitioners.

That means, the description of the processes had to be formalized in order to have an exact and

unambiguous basis for the discussions with the partners.

In task G.3.2 the background is quite different and can be described as follows:

 Mainly functions, not processes, are to be specified.

 There are no descriptions of these funtions – they have to be specified through discussions.

 The specified functions have to be implemented.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 7/14

 A tool to support the various phases from rough descriptions, to specification and finally to

impelemtation is necessary.

This explains, why task G.3.1 and G.3.2 come to different (sets of) modelling languages, methods and

tools as their resuls. The background and the aim determine the description means. And as the

background as well as the aim is different, the results are different, too.

2.3 Description means: Languages and methods

To obtain a useful requirement specification, the specifications have on the one hand to be

unambiguous, consistent and testable and on the other hand they have to be easily understandable and

readable at least by the programmer of the software. The contradiction between readablity and

unambiguousness of description languages is outlined in the following Figure 4. That means, although

it is possible to write such requirements in natural language, it is often useful, if not necessary to use a

structured or formal approach that leaves less room for ambiguouties and leads to well understandable

specifications. On the other hand, these approaches often use a specific type of description means that

has to be understood by the programmer. In addition, a requirement that has during discussions been

identified as indispensable is the possibility to refine a specification in a step-by-step approach.

Therefore, the “depth of the specification” will rise successively with the progress of the SW-project.

low

high

high

low

Natural language

Structured natural language

Semiformal language

Formal language

readability

unambiguousness

Figure 4: Description language – the relation between readablity and unambiguousness

Concerning the relation between description languages and description methods, one can state that it is

often not possible to allocate a description mean to only one of these two sets. As an example from the

reliablity field, one might think of the well known fault trees: On the one hand, the various gates and

how to connect them, correspond to the language of fault trees. The way of creating a fault tree, e.g.

starting from a “top event” and examining the conditions on a lower level that lead to this top level

event, corresponds to the method of fault trees.

Therefore, desription means are often a mixture of description languages and description methods –

see Figure 4.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 8/14

pure

description

language

pure

description

method

mixture of

description

language

and

method

Figure 4: Many description means are a mixture of language and method

The following subsections discuss the chosen description languages and methods and the reasons for

our choice. Section 2.4 discusses the mentioned tools.

2.3.1 Non-formal description means: Natural Language and
structured natural language

In this subsection, natural language as a “pure” language and the structuring of natural language as a

method is being discussed:

2.3.1.1 Natural language as a specification language

It has been agreed, that the use of natural language is indispensable, especially but not only in early

phases of the project to generate a common understanding of the project goals. Natural language can

easily be understood by every stakeholder. Therefore, it follows that natural language is used to write

the software requirements on a quite high level, where fundamental discussions are still possible and

maybe even required. Further information concerning symbolism, normative basis etc. can be found in

D.G.3.1, section 3.3.3.

A list of preliminary requirements specified in natural language derived from interviews and through

discussion on the 2
nd

 workshop can be found in D.G.4.2.

2.3.1.2 The structuring of natural language as a method to get more
unambiguous specifications

To write requirements that are more unambiguous and still easy to understand, codes of best practice

exist. These codes state that a restricted but unambiguous and clearly defined set of words and phrases

have to be used, when specifying software in natural language. In Table 1 the recommended words

and phrases are listed.

This table is a modified cutaway. The origin was presented at the April 1998 Software Technology

Conference presentation "Doing Requirements Right the First Time."

Table 1 Quality measures related to individual SRS statements

Imperatives: Words and phrases that command the presence of some feature, function, or

deliverable. They are listed below in decreasing order of strength.

Shall Used to dictate the provision of a functional capability.

Should Used to describe the intention to provide a functional capability.

Therefore, should is much weaker than shall.

Is required to Used as an imperative in SRS statements when written in passive voice.

Must or must not Most often used to establish performance requirement or constraints.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 9/14

Are applicable Used to include, by reference, standards, or other documentation as an

addition to the requirement being specified.

Responsible for Used as an imperative in SRSs that are written for systems with pre-

defined architectures.

Will Used to cite things that the operational or development environment is

to provide to the capability being specified. For example, The vehicle's

exhaust system will power the ABC widget (ABC is not an abbreviation

but only a placeholder).

Continuances: Phrases that follow an imperative and introduce the specification of

requirements at a lower level. There is a correlation with the frequency of use of

continuances and SRS organization and structure, up to a point. Excessive use of

continuances often indicates a very complex, detailed SRS. Use continuances in your SRSs,

but balance the frequency with the appropriate level of detail called for in the SRS.

below, as follows, following, listed, in particular, support.

Directives: Categories of words and phrases that indicate illustrative information within the

SRS. A high ratio of total number of directives to total text line count appears to correlate

with how precisely requirements are specified within the SRS. Incorporate the use of

directives in your SRSs.

Figure, Table, For example, Note

Options: A category of words that provide latitude in satisfying the SRS statements that

contain them. This category of words loosens the SRS, reduces the client's control over the

final product, and allows for possible cost and schedule risks. You should avoid using them

in your SRS.

Can, May, Optionally

2.3.2 Semi-formal description means: UML class-diagrams and use-
cases

As soon as a common but only rough understanding has been achieved, the requirements are to be

specified in more detail. Then, the need for exactness increases while the need for common

understandability decreases. At this stage of the discussions between the client and the supplier the

specification in natural-language is being refined in a step by step approach and finaly complemented

by formal versions of the specifications. These specifications may even refer to the used SW-

plattforms to implement the system.

It turned out in the discussions and during the workshops that UML, especially UML class diagramms

and UML use-cases, are the most appropriate modelling means, when it comes to specify the

requirements more formally. Especially the following reasons have been pointed out:

 UML is broadly and very well known in the SW-engineering community.

 There are plenty of tools available.

 Many partners already made very good experiences with UML and appropriate tools among

the partners. So, one can say, UML is industry proven.

 UML is seen as a very good compromise between readabilty and unambigousness.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 10/14

 The UML supports the designer as well as the developer of the SW-tool. I.e. UML is

applicable through many phases of SW-engineering.

As has been mentioned in the introduction of Section 2.3 (see Figure 4), many description means can

be seen as a mixture of language and method. This holds for UML use-cases, class-diagramms as well.

2.3.2.2 UML class-diagrams

A class in the context of SW engineering specifies a set of variables and methods (functions) that

belong in some way to each other. In any other than a SW engineering context, classes specify types of

general objects (e.g. the class “car” in contrast to a specific car).

Class diagrams rank among the most important UML diagrams. They are often used in order to get an

overview of a system or to better depict the relations and dependencies with other diagram types, such

as use-cases (see below). They show the static structure and relations of classes within a system. One

gets a good overview of who (which class / classes) is related to whom (which class / classes) and

what (the whole operations) they can do. The relations may be associations, aggregations or

generalisations.

UML class-diagrams are used to describe the (static) structure of a system. The static structure of the

existing tools used will not be described. Only modules or interfaces which glue the single

components together might be worthwhile to be modeled as UML class-diagrams.

Further Information about UML class diagramms can be found in D.G.3.1.

2.3.2.1 UML use-cases

Use-cases are used in UML as aids to develop user-specific requirements, to represent user goals and

wishes and to specify the required system behaviour [1], [2]. This way, the interaction of the system

with its environment is specified. This type of representation allows a conscious decoupling of the

design and behaviour of a system, and gives an overview concerning the way the actors initiate the

use-case and who is involved in the use-case.

As large parts of the requirements will be met by the existing used Document Management System, a

large number of corresponding use-cases is pre-defined by the existing system. For example,

procedures for logging in/out, committing and extracting documents etc. will probably be used “as is”,

as long as they serve the specified requirements.

Further Information about UML use-cases can be found in D.G.3.1.

2.4 Tools

In this section the supporting tools that will most probably be used for specifying the requirements to

be met by the tool to support the safety case writer, are presented. According to Figure 3, these are

MS-Word, MS-Visio and MS-Excel for the non-formal specification and Enterprise Architect for the

semi-formal specification. In addition to this, the tool “Trend/Analyst” is presented, which may be

used for requirements tracing.

In the context of workstream G it has been decided to not use DOORS for requirments-tracing. This

has been done against the following background: The requirements that are to be traced in WS-G only

relate to tasks G.4.2 “System and Software Specification” and G.5.1 “Implementation of tools”. In this

context, only a limited amount of requirements are to be traced and these are obsolete after the

implementation of the supporting tool. This is different a different situation compared to e.g. WS D:

There, functional requirements are to be managed and these are part of the majour goal of INESS. In

addition, in WS D the number of requirements is significantly higher than that in WS G.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 11/14

2.4.1 Tools to support the non-formal specification

Concerning the tool support for the non-formal specification many commonly used and industry

proven tools are available. It has been decided on workshops and in various discussions that for this

task Microsoft tools will suite very good:

 The specifications in the (structured) natural language can e.g. be accomplished very well by

MS-Word.

 In addition the use of a commonly known graphic tool (e.g. MS-Visio) is intended to describe

various relations and for clarification of any issue on a high level, i.e. in the first stages of SW

engineering.

 MS-Excel may alos support the handling of information in “semi-structured” way.

Therefore, these tools seem to be appropriate to support the non-formal specification of the tool and

it’s behaviour.

2.4.2 The tool to define and trace requirements in a semi-formal way

During discussions on the workshop, it has been decided to use the tool “Enterprise Architect” (see

[3]) to support the semi-formal specification of the tool to be developed. The following reasons led to

this decision:

Enterprise Architect (EA) is commonly known in the field of SW-engineering and is being widely

used. Licenses have been sold to 60 countries up to now (March 2010). Furthermore, with a price of a

few hundred Euros, the tool is very affordable. In addition, the tool is industry-proven: E.g. Funkwerk-

IT has made very good experiences with this tool in the field of SW-engineering.

Specific characteristics are the enabling of:

 Modelling and managing of complex information: EA supports single persons, groups or huge

organisations in modelling and managing of complex information-systems.

 Modelling, managing and tracing of requirements: EA supports the compilation ov

requirements and their allocation to design requirements.

 UML-based designing and implementation of systems: Based on the standard UML 2.1, it

allows to design and to document SW-systems.

 The visualisation and inspection of complex systems: E.g. it allows reverse engineering source

code to understand and reveal the structure of the implementation. This especially is

impartant, as we intend to use and adapt open source SW.

 The support of a system’s life-cycle: From design-, implementation-, test- and maintenance-

details, all information is tracable.

 The generation of plattform-independent models by model-driven-architecture: Model-driven-

architecture (MDA) is a standard to translate plattform independent models with the help of a

transformation into various plattform-dependent models. This again is very suitable for our

tasks, as various partners use different plattforms for the company-specific tools.

Against this background, during the WS-G’s workshop the participants agreed to use Enterprise

Architect that has been proposed by Funkwerk IT; see Figure 6 for a screenshot of Enterprise

Architect.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 12/14

Figure 6: Screenshot of Enterprise Architect (here: UML-class diagrams)

2.4.3 Requirements tracing with Trend/Analyst

Besides using Enterprise Architect, the open-source tool Trend/Analyst (TA) [4] may be used for the

management of requirements.

Besides the common tracking and tracing functionalities TA provides a built-in glossary function,

which further helps to clarify communication between system design and software implementation. A

screenshot of the used open-source tool can be seen in figure 7.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 13/14

Figure 6: TREND/Analyst – Requirements Modeling Tool

Section 4 – CONCLUSIONS

It has been decided to successively refine the specification: starting from descriptions in natural

language and with non-formal figures, and ending in a semi-formal specification with UML. Against

this background, the appropriate tools to support the specification tasks have been identified, i.e.

Microsoft products for the non-formal (“high level”) specifications and Enterprise Architekt to suport

the formal specification up to the automated generation of the bodies of the functions and classes.

The identified languages and methods as well as the chosen tools support several of levels

specification of the tools architecture as well as the specification of its behaviour. Moreover, all the

description means and tools are commonly known and industry proven, which was an additional

reason for chosing them.

 Grant agreement no.: 218575 Deliverable report – WS G _ D 3.2

INESS_WS G_ Deliverable 3.2_WS_Finalized_Report_Ver2010-03-08 Date: 04-03-2010

Revision: 9 Security: Confidential – Consortium Only Page 14/14

Therefore, one can conclude that the identified description languages and methods and the chosen

toolset enable WS-G to specify the system and its behaviour (in tasks G.4.2) in an appropriate manner.

Section 5 – BIBLIOGRAPHY

[1] Chonoles M.J., Schardt, J. A.; UML 2 für Dummies, Wiley-VCH, 2003

[2] URL: http://www.sigs-

 datacom.de/sd/publications/os/1998/02/OBJEKTspektrum_UM_kompakt.htm, Last call:

 01/2009

[3] Sparx Systems, Enterprise Architect, http://sparxsystems.eu/

[4] TREND/Analyst, Gebit Software, http://www.gebit.de/loesungen/ta_download.php

http://www.sigs-/
http://www.sigs-/
http://sparxsystems.eu/
http://www.gebit.de/loesungen/ta_download.php

