
 High-quality interface specifications
with SysML modelling

www.eurailpress.de/sd

3/2011

Sonderdruck aus

SD_Lauscher.indd 1SD_Lauscher.indd 1 30.03.11 14:4730.03.11 14:47

SIGNAL + DRAHT (103) 3/2011 10

 Interfaces

 High-quality interface specifications with
SysML modelling
Thomas Lauscher / Christian Fischer / Thorsten Hiebenthal

This article describes an approach
that, starting with a coarse view of
the system, leads to a detailed inter-
face specification in clearly defined
steps. The approach has been devel-
oped in the course of many technical
discussions in collaboration with rail-
way engineering experts of Deutsche
Bahn AG. It is especially suitable for
creating high-quality specifications in
the complex environment of railway
engineering. The procedure has be-
come standard in the project NeuPro
of DB Netz AG. Due to its clear struc-
ture, the approach is highly suitable
for major projects with large teams of
specifiers.

1 Introduction

Railway network operators are increas-

ingly facing the challenge of integrating

subsystems supplied by multiple manu-

facturers. Currently, many interfaces lack

detailed specifications that manufactur-

ers could use for guidance. As a result,

entire systems are normally ordered from

a single supplier.

Within the project NeuPro, DB Netz AG

follows the objective of achieving higher

flexibility by creating standardised inter-

face specifications. Berner & Mattner has

developed an interface specification ap-

proach in support of this goal. The ap-

proach, which is presented in this article,

is based on modelling with SysML (Sys-

tems Modeling Language) [1]. It starts

with a simplified view of the overall sys-

tem and then follows a model-based and

redundancy-free path with clearly de-

fined steps to arrive at the final interface

specification.

2 The challenge

The traditional approach for cooperation

between railway operator and manufac-

turer provides for a clearly defined tran-

sition, which can be described in the V

model according to EN 50126 between

phases 4 and 5 (figure 1) of the RAMS

life cycle (referred to as CENELEC phas-

es below). The blue boxes indicate activ-

ities carried out by the railway operator,

the yellow ones indicate the activities to

be carried out by the manufacturer.

The railway company uses specifica-

tions (CENELEC phase 4) to describe

WHAT the system to be developed

should provide. The manufacturer for

his part develops specifications in sev-

eral steps in CENELEC phases 5 and 6

describing the realization (HOW). Due to

this classical task sharing, the manufac-

turer assumes the responsibility for the

successful operation of the overall sys-

tem comprising the IXL and the field ele-

ments. Consequently, the manufacturer

has to ensure the interoperability of the

subsystems. As a result, the railway op-

erator can only procure the system as a

whole.

In order to achieve higher flexibility

in future, DB Netz AG has resolved to

provide detailed and standardised in-

terface specifications. This means that

DB Netz AG will create interface speci-

fications for those interfaces whose in-

teroperability is to be ensured. This can

only be achieved by taking over tasks

which until now are left for the manufac-

turers to carry out. The right side of fig-

ure 1 shows this constellation, visualised

by blue-yellow boxes.

As the left side of the V model illus-

trates, for example, considerations con-

cerning architecture and distribution

among individual subsystems (CENELEC

phase 5). In some cases, predefinitions

have to be set for CENELEC phase 6,

e. g., regarding specification of electric

currents and voltages. The right side of

the V model reflects additional tasks the

railway operator has to perform. These

are tasks that so far have been tak-

en over by manufacturers in CENELEC

phases 8 and 9.

The interface specification is the most

important document needed to ena-

ble interoperable systems from multi-

ple manufacturers. An interface specifi-

cation has to comprise the following re-

quirements:

 Compilation and description of all

functional processes to be covered by

the interface,

 compilation of all non-functional re-

quirements to be implemented by the

interface, e.g., RAMS(S) requirements,
Figure 1: V model according to EN 50126 with old and new approach

SD_Lauscher.indd 10SD_Lauscher.indd 10 30.03.11 14:4730.03.11 14:47

SIGNAL + DRAHT (103) 3/2011 11

Interfaces

 detailing of all data to be transmitted

via the interface,

 technical details to be considered to

enable the two subsystems to be con-

nected.

The requirements of these categories

lead to a technical interface specification

for all ISO/OSI layers.

It is the interface specification author’s

duty to provide a binding architecture

and define in detail which tasks each

subsystem covers. Finally, he has to de-

scribe the interfaces between the sub-

systems for all ISO/OSI layers in such

detail that interoperability is ensured.

These are tasks from the CENELEC

phases 5 and 6 that railway operators

have not yet been concerned with in this

way.

A recipe-like approach is desirable to

fulfil the requirements of writing interface

specifications, which is quite a complex

task. Such an approach would guide rail-

way engineering experts through all the

steps necessary to obtain the final inter-

face specification. A procedure of this

kind, currently being developed in the

NeuPro project at DB Netz AG, is de-

scribed below.

3 The solution path

The solution path is divided into two

phases: modelling on the domain level

and modelling on the technical level. The

activity diagram shown in figure 2 graph-

ically visualises the interface modelling

process.

The domain level provides a function-

al, logical, and abstract view of the re-

quirements, independent of particular

solution concepts. Solution-related re-

quirements, such as physical, electrical

or software descriptions, are covered at

the technical level. Tasks carried out at

the domain level are referred to as the

analysis phase in systems engineering.

The technical level uses a technical

solution concept to implement the do-

main level requirements. In systems en-

gineering, this phase is referred to as the

design phase.

3.1 Activities at the domain level

At the beginning, it needs to be deter-

mined which of the subsystems of the

overall signalling system are involved in

the interface communication (referred to

as interface end points below) and which

of the subsystems are relevant for the in-

terface to be specified. This is referred

to as the interface context. SysML ap-

plies a block definition diagram for this

purpose. It shows the static structure

of elements (blocks in SysML) and their

relations to each other (associations in

SysML).

Subsequently, the interface definition

requires determining which function is

performed on which subsystem of the in-

terface context and which of these func-

tions require communication via the in-

terface. In SysML, use cases reflect the

functionality of a subsystem as services

that a subsystem offers to another sub-

system or to a person (referred to as ac-

tors in SysML). After defining the inter-

face context, the interface-relevant use

cases have to be identified and modelled

in a use case diagram.

A use case consists of a sequence of

actions executed in turn by the subsys-

tem and the actor who is applying the

use case. The activity diagram of SysML

models this sequence of alternating ac-

tions between actor and subsystem.

Which sub-function is to be executed on

which subsystem and in what sequence

is defined in detail.

Once the use case sequences have

been worked out and the functional dis-

tribution among the subsystems has

been fixed, the next step is a function-

al interface specification based on se-

quence diagrams. The necessary com-

munication of functional information

(commands and messages) across the

interface is determined for standard

workflows (successful process flow of a

use case without faults) as well as for im-

portant deviant scenarios.

Sequence diagrams are suitable for

visualizing the interaction of a number

of selected communication scenarios.

The goal is to obtain an interface speci-

fication that is as complete as possible,

however. Therefore, a new diagram type

now comes into play: Statecharts for

subsystems of the interface end points

can help cover and model all exception

cases as well. In this way, the interface

description is largely complete at the do-

main level. Lastly, statecharts offer exe-

cution and simulation options, facilitat-

ing further optimisation and requirement

testing.

3.2 Activities at the technical level

Describing the concrete technical imple-

mentation forms the final step of the in-

terface specification. At first, the ISO/OSI

layers are described (see chapter 8.1). If

industry protocols and standards such

as Ethernet and TCP/IP are applied, it

is sufficient to refer to their specifica-

tion. Finally, the technical data telegrams

are defined, including the description of

their bytes and bits as well as their value

ranges and meanings.

The Berner & Mattner SysML
process, SYSMOD and OOSEM

The process for developing interface

specifications presented in this article is

part of a comprehensive process devel-

oped by Berner & Mattner for modelling

and developing railway engineering sys-

tems with SysML.

The overall process

 is based on the development process-

es (methodology) SYSMOD (Systems

Modelling Process) and OOSEM (Ob-

ject-Oriented Systems Engineering

Method),

 implements the concept System of

Systems (SoS),

 defines a model structure (implement-

ed with SysML packages),

 supports the modelling of variants,

 integrates the phases of the RAMS life

cycle [2],

 supports three presentation levels of

railway engineering requirements (op-

erational, domain, and technical lev-

els)

 is easier to understand due to the limi-

tation of the number of used SysML

model elements, compulsory mod-

elling guidelines and integration and

preference of railway engineering

terms.

The modelling of interface specifica-

tions described in this article can be inte-

grated seamlessly and redundancy-free

Figure 2: The interface modelling process
as an activity diagram

SD_Lauscher.indd 11SD_Lauscher.indd 11 30.03.11 14:4730.03.11 14:47

SIGNAL + DRAHT (103) 3/2011 12

 Interfaces

into the overall SysML signalling system

model. Modelling of the operational lev-

el is not necessary for creating interface

specifications and will not be discussed

in any detail in this paper.

The underlying methodology, SYS-

MOD, has been described in the publi-

cation [3] by Tim Weilkiens, OOSEM in

[4] by Sanford Friedenthal. Both con-

tain a method for using SysML, from top

level requirements through to a techni-

cal specification. The methodologies ex-

plain which SysML diagram type should

be applied at what point of time in the

process and in which way. Further, it is

described how to link the different mod-

el elements in order to avoid redundancy

and thus ensure traceability.

4 Interface context modelling

The interface context is modelled with-

in a block definition diagram. The inter-

face between the interlocking logic (IXL

logic) and the Radio Block Centre (RBC)

is shown in an exemplary diagram in fig-

ure 3. The displayed subsystems are the

IXL logic, the RBC and two external ac-

tors – ETCS level 2 guided trains and a

maintenance staff member.

The interface to be described is shown

as an association between the IXL logic

and the RBC. The RBC is linked to one

or several trains running under supervi-

sion of ETCS level 2. The human actor

“maintenance staff member” can com-

municate with the IXL logic as well as

with the RBC.

5 Use case analysis

The use case analysis is indispensable

for obtaining an interface specification

even though the use case diagrams, as

its direct results, do not always have to

be included in the interface specification.

In most cases, they are included in order

to explain to the reader why certain func-

tionalities require the use of the interface.

In this case, the use case diagrams make

for seamless traceability from higher-lev-

el use cases through to the last bit at the

interface. If this seamless traceability

does not appear to be necessary the use

case diagrams will usually not be includ-

ed in the interface specification.

The use case analysis is performed

for each of the two interface end points

in succession. This serves to determine

which services each of the interface end

points has to provide for the other and

whether any given service necessitates

communication via the interface. In this

way, the system use cases are identified.

System use cases represent the actual

user goals of an actor at the interface

end points. Exception situations and re-

used partial functionalities of use cases

are modelled by secondary use cases.

As an example, figure 4 shows the

parts of the RBC subsystem use cases

that are linked to the RBC subsystem

and therefore require interface commu-

nication and are relevant for the inter-

face. The diagram contains two actors

affected by the use cases. The second-

ary use case, “initialize RBC with IXL

logic data“, is linked to the primary case,

”grant movement authority“ using the

“extend“ relation. This shows that, under

certain conditions, the initialization can

be carried out within the use case UC04

(e. g., after connection losses). The use

case ”process signalling information and

Figure 3: Block definition diagram ”Interface context with actors“ of the IXL logic – RBC
interface

Figure 4: Use case diagram ”Use cases of the RBC subsystem”

SD_Lauscher.indd 12SD_Lauscher.indd 12 30.03.11 14:4730.03.11 14:47

SIGNAL + DRAHT (103) 3/2011 13

Interfaces

grant movement authority“ is integrat-

ed via the ”include“ relation of use case

UC01. This means that, at a certain point

within the process of use case UC01, the

use case UC02 is invoked as well.

6 Use case procedur es –
functional decomposition
of the interface end points

After the use case analysis has been car-

ried out it is clear which interface-rele-

vant tasks both subsystems of the inter-

face end points have to provide. Howev-

er, neither has the process behind a use

case been clarified yet, nor is it known

how the individual process steps of this

use case are distributed among the inter-

face end points.

In order to determine this, an activity

diagram is drawn for each interface-rele-

vant use case illustrating the desired use

case procedure. Partitions (swim lanes)

represent the interface subsystems and

define the functional correlation of the in-

dividual steps (referred to as actions in

SysML) to the RBC and to the actors, re-

spectively. This process step serves to

distribute functions and is called func-

tional decomposition.

The activity diagram is extended by

additional details once the general work-

flows and the allocation to the subsys-

tems have been defined. An action that

is used in the use case activity diagram

of a subsystem can be of one of the fol-

lowing types, according to the B&M defi-

nition:

 an invocation of another use case,

 a subsystem function,

 a subsystem action,

 a simple action.

A subsystem function is an essential

function of the subsystem of a certain

size describing the subsystem. Subsys-

tem actions, on the other hand, are mi-

nor functions of a subsystem. The mod-

eller has to make the distinction. The

purpose of this differentiation is to pre-

vent the list of the subsystem functions

describing the subsystem from growing

unnecessarily with minor and inessential

functions.

A simple action (”grant movement au-

thority“ in figure 5) cannot be re-used in

other diagrams. The action has to be im-

plemented as a subsystem action if re-

usability is desired and it is not a subsys-

tem function.

An invocation of another use case is

implemented as a call of the activity di-

agram of the called use case. This is

marked by a fork symbol in the lower

right corner in the action box.

A subsystem function and a subsys-

tem action are realised as an invocation

of a SysML operation of the respective

subsystem block.

Using operations and invoked use

cases in the described way ensures

that the defined subsystem actions can

be re-used in sequence diagrams and

statecharts of subsequent analysis and

design steps. Redundancy is avoided as

well, leading to more consistent and ac-

curate specifications.

This consistency and absence of re-

dundancy can be seen in the following

block definition diagram (see figure 6).

By defining the subsystem operations

within the activity diagrams, they have

now become subsystem block opera-

tions. The operations can be re-used

in all following analysis steps and dis-

played in various views.

7 Communication Modelling

So far, the characteristics of the sys-

tem consisting of the two interface end

points have been modelled. The commu-

nication across the interface is described

in the next step. This includes the specif-

ic procedures at the interface, which are

visualized by sequence diagrams.

Figure 6: Block definition diagram with system functions and system actions of the RBC

Figure 5: Activity diagram of the use case ”Process signalling information and grant move-
ment authority“ of the RBC

SD_Lauscher.indd 13SD_Lauscher.indd 13 30.03.11 14:4730.03.11 14:47

SIGNAL + DRAHT (103) 3/2011 14

 Interfaces

7.1 Communication modelling –
sequence diagrams

First, sequence diagrams are used to de-

scribe the normal behaviour at the inter-

face. Each sequence diagram covers ex-

actly one scenario (sequence of actions

within a use case that has to be execut-

ed under certain conditions). Though se-

quence diagrams do allow optional pro-

cedures, these tend to make them more

difficult to read. Therefore, optional pro-

cedures are used very sparsely in the

presented approach. Thus, a series of

sequence diagrams is generally need-

ed to illustrate all relevant functionalities

that have to be supported by the inter-

face.

An example of a sequence diagram is

shown in figure 7, describing the func-

tional information objects that have to

be sent via the interface to accomplish

the initialization of the IXL, triggered by

the RBC. The information objects can

be divided into commands and messag-

es. They are used throughout, starting

with sequence diagrams and after that

by state modelling. Finally, they are de-

fined by concrete telegram content on

the technical level. The benefit of this ap-

proach is that an individual piece of in-

formation that is transmitted via the in-

terface always carries the same name –

whatever diagram type it is used for or

whichever modeller has modelled it. This

enables modelling without redundancy,

which, in turn, facilitates re-usability of

model elements.

The use of state invariants (indicat-

ed by light blue rectangles in figure 7) is

another characteristic of sequence dia-

grams. States of the statecharts, cov-

ered in the following chapter, are used

for these invariants. They facilitate an

extended understanding of the sys-

tem context. A relationship to the sub-

system functions described in chapter

6 is established by modelling operation

calls that are executed in response to re-

ceived commands and messages.

7.2 Communication modelling –
statecharts

Statechart modelling describes how

SysML blocks react to stimuli by certain

events, depending on the current state

of these blocks. In general, they can rep-

resent overall systems, subsystems, or

logical components. In order to create

interface specifications statecharts for

subsystems of both interface end points

need to be drawn

As an example, figure 8 shows the

statechart of the interface area of the

IXL logic. The subsystem interface area

depending on the current state of the

subsystems. These details are imaged

in statecharts.

Furthermore, the communication

modelling includes the response of

both subsystems to external stimuli,

Figure 7: Sequence diagram of an example scenario, IXL logic initialization

Figure 8: Statechart: states of an interface area of the IXL logic subsystem

SD_Lauscher.indd 14SD_Lauscher.indd 14 30.03.11 14:4730.03.11 14:47

SIGNAL + DRAHT (103) 3/2011 15

Interfaces

rily. The railway company must provide

technical constraints that were formerly

in the manufacturer’s area of responsi-

bility. These constraints are necessary to

prevent different manufacturers develop-

ing incompatible solutions.

evant behaviour is complete. Concrete

guidelines for the technical implementa-

tion are still missing, however. Supplier-

independent interoperability of an inter-

face can only be achieved by prescrib-

ing important technical details mandato-

represents the part of the IXL logic that

contains all logic required for communi-

cating with the RBC. The first thing that

catches the eye in the diagram is that

commands and messages are used as in

the sequence diagrams. They occur as

incoming events the system is reacting

to (e. g., the message, “Msg Comm: con-

nection established“). They can, howev-

er, also be outgoing events that are sent

to the respective other system during

a state transition (e. g., the command,

“Cmd IXL: Request for initialization to

RBC“, which is sent during the transition

into the state ”Initializing”).

When state modelling interfaces, it is

important not to try to model the com-

plete internal behaviour of both interface

end points. The objective rather must be

to identify the relevant parts of the in-

terfaces and to design their state mod-

els. Interface-relevant system states are

states either receiving or sending infor-

mation objects via the interface.

7.3 Logical subsystem
decomposition

In the previous chapter, the statechart

did not cover the entire subsystem IXL

logic. In fact, it only contained a part of

the IXL logic, namely, an interface area.

The fact that an IXL logic contains sev-

eral interface areas is the reason why the

interface communication cannot be lo-

cated directly in the statechart of the IXL

logic. Therefore, parts of the subsystem

have to be defined within the interface

specification to some extent as well.

Underneath a component, the interface

communication can now be modelled as

a statechart for a single component.

Additionally, for other reasons, it can

be necessary to decompose the subsys-

tem into logical components, to allocate

them to functional groups or to draw the

statecharts in a more clear, legible, and

structured way, for instance. In figure 9,

the RBC subsystem is split up into logi-

cal components.

It should taken into account that the

logical decomposition does not have to

be complete. Concerning the specifica-

tion of interfaces, this would create addi-

tional, needless effort. It is rather recom-

mended to draw only those logical com-

ponents that are needed for the interface

specification

8 Technical implementation
guidelines

After the statechart modelling has been

finalised, the description of the affected

subsystems’ structure and interface-rel-

Figure 9: Block definition diagram, logical decomposition of the RBC

Figure 10: Telegram
structure, description
of telegram fields,
and usage of
telegrams

SD_Lauscher.indd 15SD_Lauscher.indd 15 30.03.11 14:4730.03.11 14:47

SIGNAL + DRAHT (103) 3/2011 16

 Interfaces

layers replaceable. One approach could

be, for example, to apply the network

protocol TCP/IP for layers 3-4 and to use

Industrial Ethernet for layers 1-2.

To meet safety requirements, an inter-

mediate safety layer between the trans-

portation layer (4) and the presentation

layer (6) could be specified and devel-

oped by modelling.

SysML facilitates the presentation of

these layers and their interactions with

block definition diagrams and internal

block diagrams.

LITERATURE

[1] OMG Systems Modeling Language (OMG

SysML) Specification,

Internet: http://www.omg.org/technology/

documents/domain_spec_catalog.

htm#OMGSysML, OMG

[2] EN 50126:1999 – Spezifikation und Nach-

weis der Zuverlässigkeit, Verfügbarkeit, In-

standhaltbarkeit und Sicherheit (RAMS), VDE

[3] Weilkiens, T.: Systems Engineering mit

SysML/UML, dpunkt Verlag, 2. Auflage 2008

[4] Friedenthal, S.: A Practical Guide to

SysML – The Systems Modelling Language,

Elsevier, 2008

[5] Zimmermann, H.: OSI Reference Model-

The ISO Model of Architecture for Open Sys-

tems Interconnection, 1980

ments such as RAM(S) requirements.

Additionally, decisions have to be made

regarding the actual technical implemen-

tation at the technical level. The ISO/OSI

reference model [5] is widely used for in-

terfaces (see table 1).

The developed application procedures

reside on layer 7, the application layer.

Due to its layered architecture, the

ISO/OSI model facilitates a clear separa-

tion of network communications respon-

sibilities and tasks. Moreover, it helps to

define and apply industry standards for

individual layers and to make individual

Signalling systems almost exclusive-

ly use telegram-based data interfaces.

Therefore, how to define interface tele-

grams leaving no room for interpretation

is illustrated in the example below.

As an example, the upper part of fig-

ure 10 shows a structure of a data tel-

egram, that is, its byte and bit structure.

This is followed by a description of all

telegram fields in the middle part. Finally,

the ”telegram usage“ is defined for every

telegram instance in the lower part.

In this context, the term telegram us-

age refers to a specific usage of a tele-

gram as a command or a message. The

telegram usage definition describes the

content of all fields that represent the

specific usage as a command or a mes-

sage. In the example shown above, it

only refers to the control byte because

this differentiates between the two tel-

egram usages, ”send text“ and ”delete

text“. Fields are not mentioned here if

their content is variable within the given

telegram usage, the text to be sent, for

example.

Each telegram usage is given a unique

name within the context of the interface.

The name is used in the sequence dia-

grams and statecharts, helping to deter-

mine exactly how a telegram should be

composed for any given task at any time.

8.1 ISO/OSI layers below the
application level

The interface requirements developed at

the domain level describe the interface at

the functional level. Besides these func-

tional requirements, an interface also

has to implement non-functional require-

Table 1: The ISO/OSI layers of the reference model

Berner & Mattner Systemtechnik GmbH
Erwin-von-Kreibig-Str. 3

80807 München

Tel.: +49 (0)89 608090-0

Fax: +49 (0)89 6098182

info@berner-mattner.com

www.berner-mattner.com

Dipl.-Ing. Thorsten Hiebenthal

Head of Transportation

Berner & Mattner Systemtechnik

Address: Erwin-von-Kreibig-Straße 3, D-80807 München

E-Mail: Thorsten.Hiebenthal@berner-mattner.com

Dipl.-Ing. Thomas Lauscher

Senior Systems Engineer

Berner & Mattner Systemtechnik

Address: Erwin-von-Kreibig-Straße 3, D-80807 München

E-Mail: Thomas.Lauscher@berner-mattner.com

Dipl.-Inf. Univ. Christian Fischer

Software Engineer

Berner & Mattner Systemtechnik

Address: Erwin-von-Kreibig-Straße 3, D-80807 München

E-Mail: Christian.Fischer@berner-mattner.com

The authors

SD_Lauscher.indd 16SD_Lauscher.indd 16 30.03.11 14:4730.03.11 14:47

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 100
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU (PDF-Version: 1.7 / Nov. 2010 / hy)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines true
 /ConvertTextToOutlines false
 /GradientResolution 150
 /LineArtTextResolution 300
 /PresetName <FEFF005B004D006900740074006C0065007200650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /MediumResolution
 /RasterVectorBalance 0.750000
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

